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Abstract
Numerical simulation of the steady state photoconductivity in hydrogenated
amorphous silicon over a wide temperature range (25–500 K) is extended, to
include previously neglected carrier transitions between localized states. In
addition to free carrier capture (emission) transitions into (from) localized
states, we include the process of electron hopping in conduction band tail states.
Exponential distributions are assumed for both conduction and valence band tail
states, while the dangling bond defect distribution is calculated in accordance
with the defect pool model. Localized to extended state transitions follow
the Simmons and Taylor statistics, and localized to localized state transitions
involve electron hopping between nearest neighbour sites. Comparison with
simulations in the absence of electron hopping reveals a smooth transition
around 110 K, between regions of (high temperature) extended state conduction
and (low temperature) hopping conduction. A hopping transport energy level is
identified as the peak of the energy distribution of the hopping photocarriers, and
shows a temperature dependence in agreement with existing theoretical work.

1. Introduction

Typical measurements of steady state photoconductivity (SSPC) in hydrogenated amorphous
silicon (a-Si:H) as a function of temperature and doping are shown in figure 1 [1], covering
a wide temperature range and showing all the SSPC features [1, 2]. In the undoped case, for
instance, four regions can be distinguished: region (I) at very low temperatures (T < 50 K),
where the SSPC is independent of temperature, region (II) at intermediate temperatures
(50 K < T < 150 K), where the SSPC rises with increasing temperature by several orders of
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Figure 1. Temperature dependence of the normalized SSPC (σph/eG) in logarithmic scale for
undoped, p-type and n-type a-Si:H. The dopant concentration in the plasma gas is indicated. The
samples were exposed for 30 min to 70 mW cm−2, hν = 2 eV, light prior to measurement [1]. The
vertical lines separate, in the undoped case, the four temperature regions described in the text. Note
that in [1], the authors used the symbol σp for the SSPC.

magnitude, showing a well defined activation energy, region (III) at relatively high
temperatures, where the SSPC saturates and possibly decreases with increasing temperature,
showing a thermal quenching feature, and finally region (IV) at high temperatures (T > 300 K),
where the SSPC increases rapidly with temperature. In region (I), the SSPC is also a linear
function of the excitation intensity G in such a way that the normalized photoconductivity
σph/(eG), where e is the electron charge, is equal to about 2 × 10−11 cm2 V−1.

Most of the early models developed to explain observed features of the SSPC in a-
Si:H were concerned with temperature ranges above 100 K and, therefore, have ignored the
localized–localized state carrier hopping [3–6]. They use the Simmons and Taylor statistics
for carrier occupancies [7], but differ in the density of states (DOS) distribution and the
recombination mechanism. Vaillant et al [3] proposed discrete dangling bond (DB) levels and
exponential band tails (BTs) to simulate the temperature dependence of SSPC. Their model
predicts that the contribution to recombination via DB states starts dominating at relatively
high temperatures. The agreement with the experiment is excellent above 150 K, while
below this temperature the model overestimates the experimental SSPC. Other models, using
exponential BT and a single level of DB recombination centres, have considered BT-to-DB
recombination [8] and BT-to-BT tunnelling recombination [9, 10] to provide an explanation of
some particular SSPC features observed within a limited temperature ranges. For example, the
model of Zhou et al [9] could account for the variation of SSPC in region (II), but the magnitude
of the predicted SSPC is larger than the measured one.

It was early concluded by many groups that the SSPC in the low temperature region
is due to electron hopping (EH) in the conduction band tail (CBT) [11–16]. Shklovskii
et al [14] developed a theory to explain the photoconductivity in this temperature range, in
which geminate recombination and electron hopping through localized states were considered.
Baranovskii et al [16] have also developed a theory for the low and intermediate temperature
regions (I) and (II), whereby they explain the increase of the SSPC with temperature in terms
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of a transport energy level Et at which the electron hopping contribution is a maximum. This
coincided with the transport energy Et defined earlier by Monroe [15], considering the transient
photoresponse at the long time limit. With increasing temperature, Et moves upward into more
shallow localized states and the upward hops of electrons to the vicinity of Et determine the
hopping transport.

The primary purpose of this work is to provide a numerical simulation for the temperature
dependence of SSPC in a-Si:H, combining the two conduction mechanisms related to extended
state diffusive transport and localized state hopping transport. We consider exponential
conduction and valence band tails (VBTs) and use the defect pool model (DPM) for the DB
defect density [17, 18]. The resulting density of states with three components of different
state types (the VBT donor-like states, the CBT acceptor-like states and the DB defect states)
is used to simulate the SSPC. We follow the numerical method applied by Main et al [19]
to simulate multiple trapping and hopping transport in the transient photocurrent case. This
method consists of dividing the energy gap into closely spaced energy levels and solving
simultaneously coupled rate equations corresponding to each level, for all free and trapped
carrier densities.

In contrast to previous simulation work which concentrates on limited ranges in the
temperature variation of SSPC and neglects localized–localized state transitions, the present
SSPC simulation is designed to cover low, intermediate and high temperature regions in a
single model that couples localized–extended and localized–localized state carrier transitions.
The SSPC features of figure 1 are successfully reproduced by the simulated SSPC. With
decreasing temperature at moderate light intensity, the EH mechanism starts having a
significant contribution at about 110 K, causing an increase of the SSPC activation energy
in the intermediate temperature range (100–70 K). It then dominates the SSPC, leading to
a constant SSPC below 50 K. Altering the doping smoothly from p-type through to n-type
affects considerably the region of extended state conduction above 110 K by raising towards
higher temperature. It has little effect on the intermediate activated region and practically no
effect on the constant SSPC dominated by EH. These simulations show an overall agreement
with experiment, and are interpreted in terms of doping induced changes in the DPM defect
charges on the high temperature side, and the relative contribution of EH to SSPC on the low
temperature side.

2. SSPC simulation

2.1. Density of states distribution

The DOS distribution includes exponential CBT and VBT:

gc(E) = Gc exp

(
E − Ec

kBTc

)
and gv(E) = Gv exp

(
Ev − E

kBTv

)
. (1)

Here kB is the Boltzmann constant. Model values of Tc = 300 K, Tv = 650 K, Gc =
5 × 1022 cm−3 eV−1 and Gv = 1021 cm−3 eV−1 were chosen, in agreement with the literature.
The CBT and the VBT states are treated as acceptor- and donor-like states, respectively. For
the DB states, we follow the DPM calculation [17, 18] leading to the DOS expression

D(E) = ξ

(
2

f 0(E)

)α

P

(
E + σ 2

2Evo

)
(2)

with

ξ =
(

Gv2E2
vo

(2Evo − kBT ∗)

) (
H

NSiSi

) α
2

exp

( −1

2Evo

(
Ep − Ev − σ 2

4Evo

))
,
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Table 1. Parameters for the gap density of states.

Eg (eV) 1.9
Gv (cm−3 eV−1) 1021

Tv (K) 650
σ (eV) 0.19
Ec − Ep (eV) 0.63
Evo (meV) 56
NSiSi (cm−3) 2 × 1023

H (cm−3) 5 × 1021

U (eV) 0.2
T ∗ (K) 500
Gc (cm−3 eV−1) 5 × 1022

Tc (K) 320

where α = kBT ∗/2Evo. P(E) is the Gaussian shaped defect pool with σ and Ep respectively
its width and peak position in the gap. Evo = kBTv is the width of the exponential VBT. H
and NSiSi are the total hydrogen and silicon concentrations, respectively. T ∗ is the equilibrium
temperature (freeze-in temperature). The density of DB states with different charges, neutral
state (or singly occupied) D0, positively charged (or unoccupied) D+ and negatively charged
(or doubly occupied) D−, are respectively given by

D0(E) = D(E) f 0(E) (3)

D+(E) = D(E) f +(E) (4)

D−(E) = D(E) f −(E) (5)

where the thermal equilibrium occupation functions f +, f 0 and f − [20], the probabilities for
the DB state of being, respectively, unoccupied D+, singly occupied D0 and doubly occupied
D−, are

f +(E) = 1

/ [
1 + 2 exp

(
EF − E

kBT

)
+ exp

(
2EF − 2E − U

kBT

)]
(6)

f 0(E) = 2 exp

(
EF − E

kBT

)
f +(E) (7)

f −(E) = exp

(
2EF − 2E − U

kBT

)
f +(E). (8)

The Fermi level position EF in the gap is determined by solving the charge neutrality condition
involving all free and trapped charges, which is also satisfied in the steady state quasi-
equilibrium. Ec and Ev are respectively the conduction and valence mobility edges and U
is the correlation energy. The DOS parameters used in the DPM calculation are given in
table 1. Figure 2 shows the DB density of states distribution, D(E), for undoped and lightly
doped n-type and p-type a-Si:H. The CBT gc(E) and VBT gv(E) are also shown. The arrows
point to the dark Fermi level positions below Ec: 0.87 eV for the undoped case, and 0.73 and
1.03 eV for the n-doped and p-doped cases obtained, respectively, by adding dopant charges
Nd = 3 × 1016 cm−3 and Nd = −2 × 1016 cm−3 in the charge neutrality equation (12).

2.2. SSPC numerical simulation

The energy gap is divided into N trap energy levels Ei (i = 1, 2, . . . , N) with uniform spacing
dE . In addition to the free electron and hole densities n and p, the carrier and state densities
involved in the steady state quasi-equilibrium at an energy level Ei are the trapped electron
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Figure 2. Density of states for undoped (EF = −0.87 eV), n-type (EF = −0.73 eV) and p-
type (EF = −1.03 eV) a-Si:H. Also shown are the exponential CBT and VBT state distributions
(respectively gc(E) and gv(E)) and the DB defect state distributions (D(E)) calculated by the
DPM. The three components D−, D0 and D+ of D(E) for the undoped case are shown in solid
lines.

density ni in the CBT, the trapped hole density pi in the VBT, the D− density N−
i , the D+

density N+
i , the total density of CBT/VBT states N c/v

ti = gc/v(Ei) dE and the total density of
DB states Ndbi = D(Ei ) dE . The evolution rates of these densities must be equal to zero in
the steady state regime, leading to 4N + 2 coupled equations to be solved for 4N + 2 unknown
variables: two continuity equations, for n and p,

0 = ηG +
∑

i

Ren
T,i + Ren

D,i −
∑

i

Rcn
T,i+Rcn

D,i (9)

0 = ηG +
∑

i

Re p
T,i + Re p

D,i −
∑

i

Rc p
T,i+Rc p

D,i (10)

and 4N equations representing the detailed balance at each trap energy level Ei in the gap for
the 4N trapped carrier densities ni , pi , N+

i and N−
i (i = 1, 2, . . . , N),

0 = Rcn
T,i − Ren

T,i + Rn
hi,i − Rn

ho,i , (11a)

0 = Rcn
D,i − Ren

D,i , (11b)

0 = Rc p
T,i − Re p

T,i , (11c)

0 = Rc p
D,i − Re p

D,i . (11d)

The above used rate symbols have the following significance.

Rcn/p
T/D,i : electron/hole (n/p) capture rate by tail/defect (T/D) states at Ei .

Ren/p
T/D,i : electron/hole (n/p) emission rate from tail/defect (T/D) states at Ei .

Rn
hi,i : rate of electron (n) hopping (h) into (i ) CBT states at Ei .

Rn
ho,i : rate of electron (n) hopping (h) out of (o) CBT states at Ei .

The product ηG is the rate of generated electron–hole pairs that have escaped geminate
recombination [14]. G = 1020 cm−3 s−1 is the rate of absorption of photons and η the quantum
efficiency, assumed to be equal to unity. The solution obtained by solving the 4N + 2 coupled
non-linear equations using appropriate numerical methods must satisfy the charge neutrality
condition:

p +
∑

i

pi+
∑

i

N+
i − n−

∑
i

ni−
∑

i

N−
i + Nd = 0. (12)
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The neutral DB density N0
i can be found from the DB density conservation equation

N0
i + N+

i + N−
i = Ndbi . (13)

The free electron capture and emission rates, Rcn/p
T/D,i and Ren/p

T/D,i , are defined by Simmons
and Taylor statistics [7] and have often been used in conventional SSPC simulations that
neglect hopping transitions [3, 4, 21]. The additional terms associated with EH transitions
in the N equations (11a), that concern the trapped electron density ni into the CBT states, are
expressed in terms of the nearest neighbour hopping theory in amorphous semiconductors [22].
According to this approach, the hopping transition occurs via tunnelling between an initial
state at the energy level Ei and a neighbouring state at E j which can be at the same level (iso-
energetic hopping), deeper (downward hopping) or shallower (upward hopping). The hopping
transport is then based on the single hopping transition rate [22–24]:

�i, j = νo

(
gc(E j)

GT

)
× exp

(
−2Ri, j

a

)
if Ei � E j (14a)

for iso-energetic and downward hops, with GT = ∫ Ei

Ev
gc(E) dE , the total density of CBT states

deeper than Ei , and

�i, j = νo

(
gc(Ei)

GT

)
× exp

(
−2Ri, j

a

)
× exp

(
− E j − Ei

kBT

)
if Ei < E j (14b)

for upward hops, with GT = ∫ E j

Ev
gc(E) dE the total density of CBT states deeper than E j . νo is

the attempt to escape frequency and a is the localization radius of localized states. gc(E j )/GT

in equation (14a) and gc(Ei)/GT in equation (14b) are respectively the weighting factors for
the hopping probability to a state at E j � Ei and to a state at E j > Ei . Ri, j is the hopping
distance from a state at Ei to a neighbouring state at E j , given by [25–27]

Ri, j = {(4π/3)GT }−1/3 (15)

with GT , as above, having the integral expression depending on whether hopping from Ei is
iso-energetic or downward, or it is upward. Having defined the single hopping transition rates
�i, j , the above defined total hopping rates out of and into a state at Ei are respectively

Rn
ho,i = ni ×

∑
j

�i, j (16a)

Rn
hi,i =

∑
j

n j × �i, j . (16b)

The energy distribution of the hopping photoconductivity is evaluated by application of the
Einstein relation [22]

σhop(Ei) = e2

6kT
(Ri, j )

2 Rn
ho,i (17)

and the total hopping photoconductivity is obtained by summation over all the CBT energy
levels:

σhop = e2

6kT

∑
i

(Ri, j )
2 Rn

ho,i . (18)

The free electron and hole densities in the extended states of the conduction and valence bands
contribute to the SSPC following the extended state diffusive photoconductivity

σext = e(µnn + µp p) (19)
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Table 2. Parameters for the SSPC simulation.

Nc = Nv (cm−3) 1020

Co
n = Co

p (cm3 s−1) 8.5 × 10−8

C+
n = C−

p (cm3 s−1) 3 × 10−7

Cc
n = Cv

p (cm3 s−1) 5 × 10−8

Cc
p = Cv

n (cm3 s−1) 5 × 10−9

µn (cm2 s−1 V−1) 10
µp (cm2 s−1 V−1) 0.3
νo (s−1) 7 × 1012

a (cm) 5.12 × 10−8

where µn (µp) is the electron (hole) mobility in the conduction (valence) band. With the
extended state diffusion and the localized state hopping processes occurring simultaneously,
the total SSPC is simply the sum

σph = σext + σhop. (20)

Table 2 lists the parameter values used in our SSPC simulation.

3. Results and discussion

Figure 3 shows the modelled temperature dependence of the normalized SSPC σph/eG (G =
1020 cm−3 s−1), over a temperature range extending from 25 to 500 K, for the undoped case
(curve with symbol �), the n-type case (curve with symbol ◦) and the p-type case (curves
with symbols � and ♦). It can be seen that the SSPC features described in section 1 (figure 1)
are reproduced by the simulation. The simulated SSPC in the thermal quenching region (III)
including the local maximum and minimum, shows similar temperature and doping dependence
to the measured SSPC (figure 1); on altering the doping smoothly from p-type to n-type,
passing the undoped case, this thermal quenching feature shifts towards higher temperature
and photoconductivity. Tran [5] studied this feature in detail and concluded that the local
maximum and minimum appear in the SSPC when the electron recombination changes path
from the VBT states to the DB states, with the latter having higher capture coefficient. The rates
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Figure 3. Simulated temperature dependence of the
normalized SSPC (σph/eG) for undoped a-Si:H and doped
a-Si:H at different doping degrees, as indicated by the
Fermi-level position in the gap.
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Figure 4. Temperature dependence of the
recombination rate via different state species:
� Rct, electron recombination rate via CBT
states; ◦ Rvt, electron recombination rate via
VBT states; � Rdb, electron recombination rate
via DB states.

of electron recombination via CBT, VBT and DB states are plotted as functions of temperature
in figure 4 for the undoped case. This shows that the thermal quenching feature (figure 3,
undoped curve) occurs effectively around 200 K when recombination changes path from the
VBT states (recombination rate Rct) to the DB states (recombination rate Rdb). Also, in our
simulation, the defect density of states model in figure 2 shows that the D+ and D0 densities,
as electron recombination centres, decrease as the doping is smoothly altered from p- to n-
type. This is responsible for the SSPC increase with doping in the thermal quenching region.
To reach thermal quenching at higher doping degree, the SSPC requires higher temperature
to compensate by increasing the D+ and D0 occupation functions (equations (6) and (7)).
On the low temperature side, the undoped SSPC in the EH region (I) shows no temperature
dependence, σph/eG = 4 × 10−11 cm2 V−1, and the onset temperature of this region is about
50 K, in agreement with the data of figure 1.

However, the simulation results show no doping dependence in this region, while the data
indicate a SSPC shift down to 10−11 cm2 V−1 caused by strong p-type doping. Considering that
the electric field acts as an effective temperature in the very low temperature range, Fritzsche
et al [1] were able to determine, on the basis of experimental results comparing the electric
field and temperature dependences of the SSPC, a localization radius for strongly p-type doped
a-Si:H corresponding to VBT states. It was then argued that hole hopping photoconduction
in the VBT dominates the SSPC at strong p-type doping. One has then to extend the present
simulation to include localized–localized state hopping of holes in the VBT, in order to confirm
this argument. Although this is not a straightforward task to achieve, complete numerical
simulation involving extended and localized states transport of both carrier types is the subject
of ongoing work.

Before dealing with the interpretation of the SSPC results, we start by examining the
influence of the EH process, as coupled to the other extended–localized state processes (capture,
emission, generation and recombination). Figure 5 shows the energy distribution of the
trapped electron density ni in the CBT for selected temperature values from 30 to 110 K,
in the EH dominated range (see sections below). A demarcation energy level Ehop

d associated
with the peak of the distribution shifts up to shallower states and increases in magnitude as
the temperature decreases (indicated by arrows), while the distribution width above the peak
decreases away from the CB. From 50 K down, the peak stops shifting near the energy −0.2 eV
and the distribution remains almost unaltered, resulting in a narrow temperature independent
band. This is clarified in figure 6, where this demarcation energy is plotted as a function of
temperature (+ symbol). The demarcation energy Eext

d , defined in the same way but using
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Figure 6. Temperature dependence of the demarcation energy Ehop
d identified by the trapped

electron distribution peak (figure 5), as compared to the trapped electron quasi-Fermi level defined
by Simmons and Taylor (equation (21)). The demarcation energy Eext

d defined in the same way, but
using conventional simulation based on extended state conduction (i.e. without EH), is also shown
for comparison.

conventional simulation based on extended state conduction (without considering EH), is
shown for comparison (◦ symbol). The trapped electron quasi-Fermi level EFnt defined by
Simmons and Taylor [7] is also plotted against temperature as a reference for Ehop

d and Eext
d (�

symbol):

EFnt = Ec + kBT ln

(
Cc

nn + Cc
p p

Cc
n Nc

)
. (21)

Before comparison with the Simmons and Taylor statistics, we should exclude first the region
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above about 250 K dominated by divalent DB state statistics (figure 4). Below 250 K, where
recombination is controlled by monovalent band tail states (figure 4), Eext

d does evidently
superimpose EFnt since Simmons and Taylor statistics, with only extended–localized state
transitions, is applied. In the presence of EH, the demarcation energy Ehop

d deviates left
below EFnt at about 110 K, thus defining a new mean trapped electron quasi-Fermi level,
representative of all combined extended–localized and localized–localized carrier transitions.
Comparing Ehop

d with Eext
d , we remark that they fit each other above 110 K and one can then

identify a transition temperature, around 110 K (arrow indication), between the region of high
temperature extended state photoconduction and the region of low temperature localized state
hopping photoconduction. There is also another transition temperature at about 50 K (arrow
indication), below which the new quasi-Fermi level Ehop

d stops shifting upward and stays close
to −0.2 eV. This is consistent with the photoconductivity behaviour with temperature, as will
be discussed below.

To illustrate the relative contribution of EH to the SSPC as a function of temperature,
we plot in figure 7 the normalized SSPC σPh/eG (curve with symbol ◦) and conventional
SSPC σConv/eG obtained without EH consideration (curve with solid line). σConv is a result
of an SSPC simulation performed without the hopping terms in the rate equation (11a) and
is given by an equation similar to equation (19). We also show the two SSPC components
due to extended state conduction (σext/eG with symbol •) and localized states EH (σhop/eG
with symbol +) to examine the relative contribution of each. The comparison is made for
undoped a-Si:H with G = 1020 cm−3 s−1. On decreasing the temperature, the EH process starts
having an effect at about 110 K and becomes gradually more pronounced as the temperature
decreases. The total SSPC can be approximated by the EH photoconductivity (σph ∼ σhop)
over the whole temperature range below 110 K. Hence, the inclusion of EH clearly brings in
the necessary correction to conventional SSPC simulation based exclusively on extended states
conduction [3, 4, 21]. The onset temperature 110 K of the EH photoconductivity in figure 7 is
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Figure 8. Temperature dependence of the normalized SSPC for the undoped case at four different
values of the localization radius a, indicating the sensitivity of the SSPC low temperature region
(I) to this parameter: a = 5 Å (symbol •), a = 10 Å (symbol ◦), a = 15 Å (symbol �), and
a = 20 Å (symbol �).

consistent with the appearance of the demarcation energy Ehop
d as an alternative trapped electron

quasi-Fermi level in figure 6. Decreasing the temperature further causes the SSPC to level out at
about 50 K and show the low temperature normalized SSPC of 4×10−11 cm2 V−1. We note here
that the transition temperature around 50 K, below which the hopping photoconductivity levels
out, is the same transition temperature below which the quasi-Fermi level Ehop

d stops shifting
upward (figure 6) and the trapped electron density distribution remains without alteration
(figure 5). Shklovskii et al [14] developed a theory to explain the SSPC in region (I), according
to which EH is defined by the probability for electrons to escape the geminate recombination.
The SSPC is then due to field extraction of electrons that have reached a distance from their
own holes corresponding to equal rates of geminate recombination and EH. The theoretical
expression of σph/eG is

σPh

eG
= ea2

12kTc
ln(ν0τ0)L (22)

L (in units of a) represents the normalized average photocarrier separation and τ0 the geminate
recombination time. For assumed a = 10−7 cm, ν0τ0 = 104, kTc = 0.025 eV and
G = 1020 cm−3 s−1, L is about 15 and σPh/eG = 5 × 10−12 cm2 V−1.

Comparing to our simulation results, one has to note that the effect of the quantum
efficiency η is included in the derivation of σph in the Shklovskii model, while it is neglected in
the simulation (η = 1). Referring to equation (18) and equation (22) expressing the SSPC
for the present simulation and the model of Shklovskii respectively, it appears that three
common parameters (a, ν0 and kTc) control the level of the SSPC in region (I) and that this
is most sensitive to the localization radius a. In figure 8, we present for the undoped case
the temperature dependence of σph/eG at four different values of a, with the other parameters
kTc = 0.025 eV and ν0 = 1012 s−1 as in the Shklovskii model. Clearly figure 8 confirms
the sensitivity of region (I) of the SSPC to a, and for the same value a = 10 Å as in the
Shklovskii model σph/eG ∼ 4.8 × 10−11 cm2 V−1 is about one order of magnitude higher than
that of Shklovskii. This can be due to one order of magnitude drop, at low temperature, of the
quantum efficiency η [12] that is not considered in the simulation. With the quantum efficiency
effect taken into account, the parameters can be adjusted within reasonable ranges to agree with
the experimental SSPC in region (I).
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Figure 9. Energy distribution of the EH photoconductivity σhop(E) at several temperatures between
30 and 110 K (in the EH dominated range). The temperatures are ordered in the inset column so that
transport energy Et associated with the distribution peak shifts towards the CB as the temperature
increases. The inset figure indicates the temperature dependence of the simulated Et (symbol•) as
compared to Monroe [16] definition of Et (symbol ◦).

Figure 9 shows the energy distribution of the EH photoconductivity σph(E) given by
equation (17) for several temperatures between 30 and 110 K (in the EH dominated range).
A conduction path is illustrated around the peak of each distribution and the energy level at
the distribution peak can be termed, after Monroe, transport energy Et [15, 16]. This shifts
to deeper states with decreasing temperature. Figure 9 also shows that the distribution σph(E)

remains with no appreciable alteration for the temperature values below 50 K. The temperature
dependence of Et is shown in the inset figure and one can see that Et stays at an average position
near −0.2 eV below 50 K, as the distribution σph(E) stops shifting further. This clearly explains
the constant normalized SSPC σph/eG ∼ σhop/eG ∼ 4 × 10−11 cm2 V−1 below 50 K, which
is nothing but the integrated area of σph(E). The inset figure shows also, for comparison, the
temperature dependence of Et as given by Monroe:

Et = kTc ln

(
8

27a3kTcGc

)
− 3Tc ln

(
Tc

T

)
. (23)

Although the two curves follow different temperature variations, the maximum difference of
about 0.03 eV between the two data sets could account for the different photo-response to the
transient photo-excitation considered in the model of Monroe.

In figure 10, we further decompose the SSPC in the undoped case to reveal the details
of the electron and hole photoconductivity behaviours with temperature. The SSPC above
110 K is due to extended state photoconductivity σext and this is mainly controlled by
electrons (σext ∼ eµnn). As the temperature decreases below 110 K, the EH becomes
gradually dominant and the SSPC smoothly switches to hopping dominated photoconductivity
σhop. The extended state photoconductivity, still dominated by electrons (σext ∼ eµnn),
decreases rapidly until about 90 K. Below 90 K, the hole extended state photoconductivity
becomes dominant (σext ∼ eµn p), whereas the electron extended state photoconductivity
eµnn continues decreasing steadily until about 70 K. From 70 K down, this reaches a very
low temperature independent value, eµnn/(eG) ∼ 2 × 10−13 cm2 V−1. Referring to figure 4,
the temperature region below 70 K falls within the limits where the electron recombination is
controlled by the CBT states with constant rate Rct ∼ G. It is then concluded that 70 K is
a transition temperature below which the electrons undergo a monomolecular recombination
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Figure 11. Temperature dependence of the free electron
density n (symbol �), as compared to the product of the
recombination rate via CBT states Rct and the corresponding
lifetime τnc = [Cc

n
∑

i (Nti − ni )]−1 (symbol �). From
70 K down, n = Rctτnc, indicating a monomolecular
recombination to CBT states.

to CBT states, with τnc = [Cc
n

∑
i (Nti − ni )]−1 the corresponding lifetime. Figure 11 shows

the temperature dependence of the free electron density n (symbol �) and the product τnc Rct

(symbol �). The relation n = τnc Rct expressing monomolecular recombination to CBT states is
confirmed below 70 K (vertical dashed line). Note that this carrier behaviour follows the present
simulation, which neglects the localized state hopping of holes, and that if hole hopping through
the VBT states were included the extended state photoconductivity σext could be controlled by
electrons in this low temperature region. However, the total SSPC σph that should be compared
to experimental SSPC is not influenced by this detail. This is dominated by the EH component
σhop over the entire temperature range below 110 K.
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4. Conclusion

The temperature dependence of SSPC in a-Si:H, in the range from 25 to 500 K, is studied
in terms of a model coupling the extended state free carrier transport and the localized state
electron hopping transport. The results are compared to those obtained by conventional
simulations that ignore localized–localized state transitions. A smooth transition around 110 K
separates the high temperature extended state transport and the low temperature localized state
hopping transport. The observed constant normalized SSPC σPh/eG ∼ 4 × 10−11 cm2 V−1

in the temperature range below 50 K is reconfirmed. This is consistent with the temperature
change in the energy distribution of the hopping photoconductivity, that shows no appreciable
variation below 50 K. Also, the DPM adopted for the DB defect density of states proves
compatible with the simulation model and provides a reasonable explanation of the doping
effect on the SSPC temperature dependence. The experimental observation that p-type doping
can considerably lower the SSPC in the low temperature hopping region is not reproduced by
the present simulations and would appear to require inclusion of hole hopping in the VBT.
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